Exercise 51

If $f(t)=\sqrt{4 t+1}$, find $f^{\prime \prime}(2)$.

Solution

Calculate the first derivative of $f(t)$.

$$
\begin{align*}
f^{\prime}(t) & =\frac{d}{d t} \sqrt{4 t+1} \\
& =\frac{1}{2}(4 t+1)^{-1 / 2} \cdot \frac{d}{d t}(4 t+1) \\
& =\frac{1}{2}(4 t+1)^{-1 / 2} \cdot(4) \tag{4}\\
& =2(4 t+1)^{-1 / 2}
\end{align*}
$$

Calculate the second derivative of $f(t)$.

$$
\begin{aligned}
f^{\prime \prime}(t) & =\frac{d}{d t}\left[f^{\prime}(t)\right] \\
& =\frac{d}{d t}\left[2(4 t+1)^{-1 / 2}\right] \\
& =2 \frac{d}{d t}(4 t+1)^{-1 / 2} \\
& =2\left(-\frac{1}{2}\right)(4 t+1)^{-3 / 2} \cdot \frac{d}{d t}(4 t+1) \\
& =2\left(-\frac{1}{2}\right)(4 t+1)^{-3 / 2} \cdot(4) \\
& =-4(4 t+1)^{-3 / 2} \\
& =-\frac{4}{(\sqrt{4 t+1})^{3}}
\end{aligned}
$$

Plug in $t=2$ to find $f^{\prime \prime}(2)$.

$$
f^{\prime \prime}(2)=-\frac{4}{[\sqrt{4(2)+1}]^{3}}=-\frac{4}{(3)^{3}}=-\frac{4}{27}
$$

