Exercise 51

If
$$f(t) = \sqrt{4t+1}$$
, find $f''(2)$.

Solution

Calculate the first derivative of f(t).

$$f'(t) = \frac{d}{dt}\sqrt{4t+1}$$

= $\frac{1}{2}(4t+1)^{-1/2} \cdot \frac{d}{dt}(4t+1)$
= $\frac{1}{2}(4t+1)^{-1/2} \cdot (4)$
= $2(4t+1)^{-1/2}$

Calculate the second derivative of f(t).

$$f''(t) = \frac{d}{dt} [f'(t)]$$

= $\frac{d}{dt} [2(4t+1)^{-1/2}]$
= $2\frac{d}{dt} (4t+1)^{-1/2}$
= $2\left(-\frac{1}{2}\right) (4t+1)^{-3/2} \cdot \frac{d}{dt} (4t+1)$
= $2\left(-\frac{1}{2}\right) (4t+1)^{-3/2} \cdot (4)$
= $-4(4t+1)^{-3/2}$
= $-\frac{4}{(\sqrt{4t+1})^3}$

Plug in t = 2 to find f''(2).

$$f''(2) = -\frac{4}{\left[\sqrt{4(2)+1}\right]^3} = -\frac{4}{(3)^3} = -\frac{4}{27}$$

www.stemjock.com